Analysis of Residual DSBs in Ataxia-Telangiectasia Lymphoblast Cells Initiating Apoptosis

نویسندگان

  • Teresa Anglada
  • Mariona Terradas
  • Laia Hernández
  • Anna Genescà
  • Marta Martín
چکیده

In order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs) and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated) defective cell line, as Ataxia-Telangiectasia (AT) cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70-85% of the AT viable cells (TUNEL-negative) carried ≥ 10 γH2AX foci/cell, while only 12-27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γH2AX-positive AT cells undergoing early apoptosis carried ≥ 10 γH2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γH2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γH2AX foci might function as a predictive tool to assess radiation-induced apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low levels of endogenous or X-ray-induced DNA double-strand breaks activate apoptosis in adult neural stem cells

The embryonic neural stem cell compartment is characterised by rapid proliferation from embryonic day (E)11 to E16.5, high endogenous DNA double-strand break (DSB) formation and sensitive activation of apoptosis. Here, we ask whether DSBs arise in the adult neural stem cell compartments, the sub-ventricular zone (SVZ) of the lateral ventricles and the sub-granular zone (SGZ) of the hippocampal ...

متن کامل

Endogenous and X-ray-induced DNA double strand breaks sensitively activate apoptosis in adult neural stem cells

The embryonic neural stem cell compartment is characterised by rapid proliferation from E11 to E16.5, high endogenous DNA double-strand break (DSB) formation and marked sensitivity to undergo apoptosis. Here, we ask whether DSBs arise in the adult neural stem cell compartments, the sub-ventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyr...

متن کامل

Deregulated Apoptosis in Ataxia Telangiectasia: Association with Clinical Stigmata and Radiosensitivity1

Ataxia telangiectasia (AT) is a recessive genetic disease featuring neurodegeneration, immunodeficiency, chromosomal instability, radiation hypersensitivity, and increased predisposition to cancer. Reduced or de layed induction of the tumor suppressor protein p53 after y-irradiation was reported. These characteristics may be compatible with an inability to correctly regulate apoptosis. We show ...

متن کامل

Deregulated apoptosis in ataxia telangiectasia: association with clinical stigmata and radiosensitivity.

Ataxia telangiectasia (AT) is a recessive genetic disease featuring neurodegeneration, immunodeficiency, chromosomal instability, radiation hypersensitivity, and increased predisposition to cancer. Reduced or delayed induction of the tumor suppressor protein p53 after gamma -irradiation was reported. These characteristics may be compatible with an inability to correctly regulate apoptosis. We s...

متن کامل

Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability.

Hypoxic cells have been linked to genetic instability and tumor progression. However, little is known about the exact relationship between DNA repair and genetic instability in hypoxic cells. We therefore tested whether the sensing and repair of DNA double-strand breaks (DNA-dsbs) is altered in irradiated cells kept under continual oxic, hypoxic or anoxic conditions. Synchronized G0-G1 human fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016